Crikey Math

Having fun exploring mathematics

  • Home
  • About
  • Blog
  • Contribute
en English
af Afrikaanssq Albanianam Amharicar Arabichy Armenianaz Azerbaijanieu Basquebe Belarusianbn Bengalibs Bosnianbg Bulgarianca Catalanceb Cebuanony Chichewazh-CN Chinese (Simplified)zh-TW Chinese (Traditional)co Corsicanhr Croatiancs Czechda Danishnl Dutchen Englisheo Esperantoet Estoniantl Filipinofi Finnishfr Frenchfy Frisiangl Galicianka Georgiande Germanel Greekgu Gujaratiht Haitian Creoleha Hausahaw Hawaiianiw Hebrewhi Hindihmn Hmonghu Hungarianis Icelandicig Igboid Indonesianga Irishit Italianja Japanesejw Javanesekn Kannadakk Kazakhkm Khmerko Koreanku Kurdish (Kurmanji)ky Kyrgyzlo Laola Latinlv Latvianlt Lithuanianlb Luxembourgishmk Macedonianmg Malagasyms Malayml Malayalammt Maltesemi Maorimr Marathimn Mongolianmy Myanmar (Burmese)ne Nepalino Norwegianps Pashtofa Persianpl Polishpt Portuguesepa Punjabiro Romanianru Russiansm Samoangd Scottish Gaelicsr Serbianst Sesothosn Shonasd Sindhisi Sinhalask Slovaksl Slovenianso Somalies Spanishsu Sudanesesw Swahilisv Swedishtg Tajikta Tamilte Teluguth Thaitr Turkishuk Ukrainianur Urduuz Uzbekvi Vietnamesecy Welshxh Xhosayi Yiddishyo Yorubazu Zulu

Gobs and gobs of palindromes, base 7/2

September 11, 2017 By Gary Ernest Davis

Strictly speaking it’s not base 7/2 that I’m using, because I’m allowing digits 0, 1, 2, 3, 4, 5, 6.

However, by using an exploding dots 2 \leftarrow 7 machine, we can represent positive integers in the form a_nb^n+a_{n-1}b^{n-1}+\ldots + a_1b+a_0 where b=7/2 and each a_k=0,1, 2, 3, 4, 5 \textrm{ or } 6 .

Here, for example is how we work out  the 7/2 representation of the base 10 number 37:

So just as for sesquinary palindromes, in which the digits of a palindrome, base 3/2, read the same backwards as forwards, we can look for palindromes base 7/2.

The following Mathematica code produces the base 7/2 digits of a positive integer:

SevenToTwoDigits[n0_] := Module[{n = n0}, digits = {};
While[n >= 7, digits = Prepend[digits, 7*FractionalPart[n/7]];
n = 2*IntegerPart[n/7]];
digits = Prepend[digits, n]] 

For example,

SevenToTwoDigits[373]

gives {2, 1, 2, 1, 2}, so the base 10 number 373 is palindromic base 7/2.

There aren’t many sesquinary palindromes, so how many palindromes base 7/2 are there?

Gobs and gobs!

Here’s how we can find base 7/2 palindromes up to 100000:

L = {};
While[n <= 100000,
If[SevenToTwoDigits[n] == Reverse[SevenToTwoDigits[n]], L = {L, n}];
n++]
L = Flatten[L]

This gives us the following 115 numbers (written base 10) up to 100000 that are base 7/2 palindromes:

{1, 2, 3, 4, 5, 6, 9, 18, 27, 30, 37, 44, 53, 60, 67, 74, 83, 90, 97, 135, 207, 270, 279, 342, 373, 422, 478, 534, 583, 641, 697, 746, 802, 851, 907, 956, 965, 1014, 1070, 1119, 1175, 1206, 2151, 2160, 2412, 3357, 3366, 3618, 4293, 5028, 5224, 5427, 5966, 6162, 6365, 6904, 7100, 7296, 7648, 7844, 8383, 8586, 8782, 9321, 9517, 9720, 10455, 10658, 10854, 11393, 11589, 11941, 12137, 12879, 13075, 13271, 13810, 14013, 14209, 14748, 26856, 27738, 28620, 30195, 31077, 31959, 32841, 34416, 35298, 36180, 37755, 38637, 39519, 40401, 51627, 58879, 69225, 69911, 72508, 73194, 76477, 77163, 78395, 79081, 81678, 82364, 85647, 86333, 88930, 89616, 93398, 94084, 94770, 97367, 98053}

Up to 1000000 there are 197 positive integers that are base 7/2 palindromes.

The relative abundance of base 7/2 palindromes has to have something to do with the distance 5=7-2 between 7 and 2, but I’m not sure what yet. Any clues?

 

http://www.crikeymath.com/wp-content/uploads/2017/09/crikey.wav

 

 

Filed Under: Uncategorized

Recent Posts

  • Does the DNA test say guilty or not guilty?
  • The Turtleback Diagram for Conditional Probability
  • Numbers that, base 2, are blindingly obviously divisible by 3
  • A mysterious sequence of 1s and 2s
  • Does one have to be a genius to do mathematics? Neither necessary nor sufficient.
  • Alexander Bogomolny
  • Binary disjoints of an integer
  • A cycle of length 5 for iterated squaring modulo a prime
  • The diagonal of the Wythoff array
  • Leonardo Bigollo, accountant, son of Bill Bonacci

Archives

Copyright © 2023 · Dynamik Website Builder on Genesis Framework · WordPress · Log in